Algorithmen
Ausstellungen
Beispiele
Beweise
Buecher
Didaktik
Diskussion
Einfuehrungen
Filme
Klassische Probleme
Kryptographie
Kurios
Lehre
Linkhinweise
Mathematikgeschichte
Matheseiten
... weitere
Profil
Abmelden
Weblog abonnieren

 

 
Eigentlich ist die Luft aus dem Thema ja langsam raus, aber das finde ich wirklich eine gute Idee: James Tauber arbeitet nach und nach in seinem Poincaré Project die Poincare Vermutung und den Beweis auf verständlichem Niveau auf.

I am currently working through the mathematics required to understand the Poincaré Conjecture and the possible solution recently proposed. I want to blog my journey and I'm starting out summarising the basic foundations of pure mathematics necessary to get to the conjecture-specific parts.
So weit ist er schon gekommen:

* Journey to the Poincare Conjecture
* Poincare Project: Thinking Like a Pure Mathematician
* Poincare Project: Adding Structure to Sets
* Poincare Project: Metric Spaces
* Poincare Project: Open Balls and Continuity
* Poincare Project: Open Sets
* Poincare Project: Topologies and Topological Spaces
* Poincare Project: Injections, Surjections and Bijections
* Poincare Project: Further Thoughts on Topologies and Open Sets
* Poincare Project: Homeomorphisms
* Poincare Project: Connectedness, Closed Sets and Topological Properties
* Poincare Project: A Basis for a Topology
* Poincare Project: The Standard Topology for Ordered Sets
* Poincare Project: Open Coverings and Compactness
* Poincare Project: More on Compactness
* Poincare Project: Separation Axioms
* Poincare Project: More on Separation Axioms
* Poincare Project: Manifolds
* Poincare Project: Switching from Analysis to Algebra
* Poincare Project: Associativity
* Poincare Project: Binary Operations
* Poincare Project: Identities and Monoids
* Poincare Project: Inverses
* Poincare Project: Groups
* Poincare Project: Paths
* Poincare Project: Topological Properties Revisited
* Paths as homeomorphisms of the closed interval from 0 to 1
* Homotopy
* Continuous Functions are between Topological Spaces not Sets
* Path Homotopy
* Homotopy as a Way of Distinguishing Topological Spaces
* Equivalence Relations
* Equivalence Classes
* Homotopy Classes and Simple Connectedness
* Closed Manifolds
* The Poincare Conjecture
* Number of Connected One-Dimensional Manifolds
* The Circle is Not Simply Connected
* Poincare Update
elkes_fan meinte am 10. Feb, 14:55:
Schöne Idee von Herrn Tauber, danke für den Link.
Ich habe mir ein paar Artikel von ihm angeschaut:
Nett erklärt! 
 
 
AGBs xml version of this page